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We have calculated the characteristics of neutral flow stability in a plane- 
parallel channel with injection or suction through a permeable wall. 

The stability of hydrodynamically developed symmetric flow in a plane-parallel channel 
with two permeable walls was examined in [1, 2]. In thosepapers the effect of injection and 
suction on the characteristics of neutral stability was investigated. Varapaev and Yagodkin 
[3] studied flow stability in a plane-parallel channel with injection through one wall and 
suction at the same rate through the otherp so that the flow rate remained constant. In the 
present article we examine the flow stability in a channel with one permeable wall through 
which there is uniform injection or suction. This problem contains all the characteristics 
of both flows studied earller: nonparallel flow and an asymmetric axial velocity profile. 

1. The velocity distributions for uniform injection or suction along the length of the 
channel for hydrodynamically developed flow are found from the self-similar solution of the 
Navier-Stokes equations, and have the form [4] 

.~ = (uo - -  Vx/h) f" (~), .y = v f  (~). 

The velocity function f(~) satisfies the equation 

f,v + R(f'f - -  i f ' " )  = 0. ( I )  

We write the boundary conditions for Eq. (I) for one-slded injection (suction): 

f ( - -1)  = f ' ( - - 1 ) =  f ' ( l ) =  O, f(l)  = 2. (2) 

Equation (I) with boundary conditions (2) was solved in [5] for injection. The axial 
velocity distributions over a cross section of the channel are shown in Fig. 1 for various 
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values of the parameter R. It is clear from the figure that as the injection rate is increased, the 
maxlmumvelocity point is displaced toward the lmpermeable wall, and for suction it is displaced tow- 
ard the permeable wall. Apoint of inflection appears on the velocity profile for suction; the max- 
imum value of the relative velocity increases with increasing R, and for R = 3.28 the flow 
separates from the impermeable wall as a result of the positive pressure gradient. 

For rapid injection the velocity profile, expect for a narrow region near the imperme- 
able wall, is well described by the invlscid solution of Eq. (i) (omitting the first term): 

f = 2sin [~ (t + n)/4]. (3) 

For rapid injection a boundary layer of thickness 0 (R -~/2) is formed at the impermeable 
wall. By introducing the new variables ~ = (~IRI/2)x/Z(l +~) and F= (21RI/~)x/2f the solu- 
tion of Eq. (i) is reduced to the solution of the flow problem near the frontal point of a 
cylinder [6] 

F'"-]-FF"--F"-t-I=O; F ( 0 ) =  F ' ( 0 ) = 0 ,  F ' ( o o ) =  1. (4) 

Experiments [7] showed that the velocity distribution for rapid injection was actually 
close to the inviscid profile (3) over the whole cross section of the channel except for the 
boundary layer region near the impermeable wall where the experimental points are in good 
agreement with the solution of problem (4). 

2. The stability characteristics of the flow under consideration can be calculated from 
the modified Orr-Sommerfeld equation [i] 

~ , v _  2=~" + = ~  = i~ Re Iq' - -  c)(~"-- ~ ) - -  V"~t + R If (~'" - -  ~2~ , )_  ~ ' 1 -  (5) 

Here the half-width of the channel h is taken as the unlt of length, and the mean velocity U 
in the cross section under consideration is taken as the unit of velocity. The boundary 
conditions for Eq. (5) are 

~ ( - -  1) = ~' (--  1) = ~(1) = ~' (i) = 0. (6) 

The eigenvalues of Eq. (5) with boundary conditions (6) were determined by the differen- 

tial pivotal method described in [8]. 

Figure 2 shows the neutral curves calculated for various injection and suction rates. 
It is clear from the figure that just as for flow with a constant transverse velocity [3], 
two local minima appear on the curve Re(a) in a certain range of R values as a result of the 
asymmetry of the axial velocity profile. For injection the minimum which exists for large 
values of ~ corresponds to the critical point on the impermeable wall. For low injection 
rates (IRI < 1.86) the most dangerous perturhations are those arising at the permeable wall, 
and for IRI > 1.86 those at the impermeable wall. This accounts for the behavior of the 
relations between the critical values of the neutral stability parameters and the injection 
rate (Fig. 3a): the discontinuities in the graphs of ~,(R) and c,(R), the kink in the graph 
of:Re,(R). A comparison of the calculated dependence of Re, on R with the corresponding 
curve for symmetrical injection [I] shows that in the present case the destabilizing effect 
of injection is considerably less, and is observed only for very low injection rates. As in 
two-sided injection, when IRI is increased, the influx of mass begins to exert a stabilizing 
effect (in the sense of an increase in Re,). However, in contrast with two-sided injection 
[2], the stability loss mechanism for rapid one-sided injection has a viscous character and 
is related to the development os perturbation at the impermeable wall. 

For rapid injection, taking account of the fact that the most dangerous perturbations 
are those which develop at the impermeable wall, the critical parameters can be calculated 
from the solution of the flow stability problem near the frontal point of a cylinder. 
Changing from the variable ~ and f to ~ and F, and setting 

~ =  ~-~R])k a, c ~ = - - c ,  R e ~ = ~  t 2 - ~ /  Re, 

transforms Eq..(5) with boundary conditions (6) into the form 

qD TM -- 2~ ~o" H- a~ = ia~ Re I ](F' -- c~)((p" -- o~p) -- F'"~p] -- F (~p"' -- ~r -]- F'~', 
(7) 
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~(0) = ~'(0)= ~(~) = ~' (~) = 0, (7) 

where the function F(~) is determined from the solution of problem (4). 

It follows from the solution of (7) that Re** = 18,780, u,, = 0.25, and c** = 0.21, from 
which we obtain the asymptotic relations for the critical parameters for rapid one-sided in ~ 
jection in a plane,parallel channel (R § 

R e ,  = 150001RI'/~; ~ ,  = 0-311R11/2; c ,  = 0,33. 

It is clear from Fig. 3 that the effect of a low suction rate on flow stability is qual- 
itively analogous to that of injection. For R > 1.05 the minimum of the Re(u) curve corres- 
ponding to larger values of u becomes controlling, and this leads to discontinuities in the 
graphs of the critical parameters. For R > 3 the critical Reynolds number begins to decrease 
with increasing suction rate, which is related to the decrease of the velocity gradient, flow 
separation, and the appearance of a zone of back flow at the impermeable wall. 

NOTATION 

x, y, longitudinal and transverse coordinates; Ux, uy, longltudlnal and transverse ve- 
locity components; h, half-width of channel; ~, kinematic viscosity; 2V, injection (suction) 
rate; Uo, mean velocity at channel entrance; U = U o --Vx/h , local mean velocity; Re = Uh/v, 
Reynolds number of main flow; R = Vh/v, injection (suction) Reynolds number; ~ = y/h, di- 
mensionless coordinate, ~, amplitude of perturbations; a, wave number; c, speed of propagation 
of perturbations. 
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